Programme

Unfurtunately the monastery Irsee has been closed by the Bavarian government due to the corona virus.

Therefore we have decided to offer the conference as a web conference only.

In those unpredictable times, protecting our participants’ health has the highest priority for us!

The scientific exchange must not come to a complete standstill and we believe that with this web solution we have found a way to keep the scientific community going.

In order to participate in the livestream of the conference as easy as possible and to give your presentation, we recommend the use of the web browsers Google Chrome or Microsoft Edge.

Here you can find detailed instructions for using the livestream.

As a participant of the Bioinspired 2020 you have received an e-mail containing the login data for the web conference.

The login data for the sessions are provided daily.

In order to allow all conference participants access to the posters, we ask you to upload your poster by login on the conference homepage and clicking on the button "My Submission" in the upper right corner of the conference homepage. Then select the submission to which you want to upload the poster and upload the poster at the bottom of the page.

Furthermore we would like to ask all poster authors to prepare 4 PowerPoint slides to present your poster to the audience.
Please also include your contact details on the digital poster to allow participants to reach you with questions.

Please note that your poster will be pictured publically.

As poster author you can upload your poster similar to the way you submitted your abstract.
Click on "My Submissions" in the upper right corner at the homepage.

Poster documents can be found by opening the respective abstract in the online programme.
If a poster document has already been uploaded for the abstract, it can then be opened and downloaded.

Please note that your poster will be pictured publically.

You can ask your questions via chat already during the presentations!
Please use for this the Q&A (F&A) button!

For further scientific exchange we implemented a discussion forum on the homepage of the DGM.
Please visit discussion.dgm.de and use your DGM or Bioinspired user credentials to login.

Back to overview

Lecture

Additive Manufacturing of Biomimetic Architectures with Cellulose-Based Photoresists

Wednesday (18.03.2020)
12:10 - 12:30

The polysaccharide cellulose is next to chitin the most abundant biopolymer on earth and is considered an almost inexhaustible source of raw material for the increasing demand for environmentally friendly and biocompatible products.[1] We recently synthesized a bio-based photoresist, where a photo-reactive cellulose-derivative is dissolved in an organic solvent together with a photoinitiator.

This novel photoresist is curable by two-photon absorption at 780 nm in a direct laser writing (DLW) system (Nanoscribe Photonic Professional GT). With this setup, two-dimensional architectures with a linewidth of less than 250 nm and a minimum line distance of 500 nm are achieved. Our bio-based photoresist allows three-dimensional structuring of cellulose on the µm scale via DLW.[2] Curing of our cellulose derivative is generally possible in liquid and solid state via two-photon absorption.

In contrast to common photoresists, which are based on polymers sourced from mineral oil, our approach conserves resources through replacing those polymers by sustainable materials such as polysaccharides. The presented research includes the functionalization of cellulose to enable photo-crosslinking for generating biopolymer-based hierarchical architectures. This chemical modification is a prerequisite for the fabrication of two- and three-dimensional structures by DLW. Disorder on the nano-scale is created by the surface roughness of the DLW-fabricated structures and can be tuned via the concentration of the photoinitiator.

Moreover, this polysaccharide-based photoresist enables manufacturing of biomimetic architectures, which consist entirely of a natural bulking material. Additionally, this cellulosic photoresist is curable via one-photon absorption with a UV-lamp (365 nm) in liquid as well as in dried state. Our resist opens up a new class of photo-curable polymers based on sustainable and renewable materials.


 

Speaker:
Maximilian Rothammer
Technical University of Munich (TUM)
Additional Authors:
  • Marie-Christin Heep
    University of Kaiserslautern
  • Gordon Zyla
    Ruhr-Universität Bochum
  • Prof. Dr. Evgeny Gurevich
    Ruhr-Universität Bochum
  • Prof. Dr. Georg von Freymann
    University of Kaiserslautern
  • Prof. Dr. Cordt Zollfrank
    Technical University of Munich (TUM)